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Photodissociation of Cl2 on the shorter wavelength side of the first absorption band has been known to yield
a small but significant amount of Cl(2P1/2) from the C1Πu state, despite its adiabatic correlation to the two
Cl(2P3/2) atoms. We calculated some potential energy curves of the ground and excited states of Cl2 by the
spin-orbit configuration interaction method and examined the possibilities of several nonadiabatic transition
mechanisms. It was found that the radial Rosen-Zener-Demkov (RZD)-type nonadiabatic transition from
the C1Πu to the thirdΩ ) 1u (3Σ+

1u (σg f σu
*)) state is responsible for the production of Cl(2P1/2), and the

rotational nonadiabatic transition probability from the C1Πu to the B 3Π0+u state is negligibly small. The
wavelength dependence of the product branching ratio Cl(2P1/2)/Cl(2P3/2) and the anisotropy parameter
â(Cl(2P1/2)), which was calculated from the electronic transition moments to the A3Π1u, B 3Π0+u, and C1Πu

states with the RZD transition mechanism, was in good agreement with their experimental behavior. This
RZD model and Young’s double slit model could also reproduce the quantum-mechanical interference pattern
in the orientation of the total angular momentumJ ) 1/2 of the products Cl(2P1/2).

1. Introduction

Recent advances in both experimental and theoretical studies
of molecular photodissociation enable us to investigate quite
detailed information on the dissociation dynamics. Special
interest has been devoted to molecules with open-shell fragments
with nonzero electronic angular momentum, because they would
have nearly degenerate asymptotic adiabatic potential energy
surfaces and could exhibit significant nonadiabatic interactions.
For example, Singer, Freed, and Band1 stated that if dissociation
products have nonzero electronic angular momentum, the Born-
Oppenheimer approximation breaks down in the recoupling
regions, and neglect of the nonadiabatic interactions brings
qualitative disagreement between the theoretical and experi-
mental results.

Therefore, both theoretical and experimental studies of some
details such as anisotropy parameters, nonadiabatic transitions,
product branching ratios, and orientation and alignment of total
angular momentum have been very active subjects, especially
for photodissociation of molecules with open-shell fragments
with spin-orbit splittings. For example, Hall and Houston2

discussed photofragment angular momentum polarization in
view of some correlations among the vector properties of the
photofragments and the parent molecule. Dixon3 gave a
semiclassical description of photofragment angular momentum
polarization with bipolar moments and presented detailed
equations for the profiles of Doppler-broadened spectral lines.
Siebbeles et al.4 treated quantum-mechanically the dependence
of total angular momentum polarization (orientation and align-
ment) of photofragments and showed the importance of interfer-
ence effects due to coherent excitation of dissociative states with
different helicity quantum numbers. Orr-Ewing and Zare5 also
discussed total angular momentum polarization in terms of
orientation and alignment parameters and showed the analytical
techniques necessary to obtain them from spectral intensities.

Molecular chlorine (Cl2) continues to serve as a benchmark
system to study photodissociation dynamics, and many experi-
mental and theoretical studies have been reported. The dis-
sociation products from the first absorption band of Cl2 are two
Cl atoms in the ground-state Cl(2P3/2) or the spin-orbit excited-
state Cl(2P1/2) with the spin-orbit splitting of 881 cm-1. In this
paper, we denote Cl(2P3/2) and Cl(2P1/2) as Cl and Cl*,
respectively. The adiabatic potential energy curves for the
ground and relevant excited states are shown in Figure 1. The
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Figure 1. Adiabatic potential energy curves of Cl2 obtained from the
contracted spin-orbit CI calculation. Numbers (pqrs) denote the
dominant electronic configuration (σg

pπu
qπg* rσu* s) in the Franck-

Condon region.
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first absorption band has a maximum at around 330 nm mainly
due to the transition from the X1Σ+

g to the C 1Πu (second
Ω ) 1u) state, which adiabatically correlates to 2× Cl.6 Indeed,
Colson et al.7 observed that only Cl products were detected and
that the dissociation process was highly adiabatic in the
wavelength region between 323.6 and 331.0 nm. Matsumi et
al.8 also observed that the dominant dissociation products were
2 × Cl, but found that a small amount (less than 1%) of Cl*
products appeared on the shorter wavelength side of 308 nm
with negative anisotropy parameters.

These facts show that the nonadiabatic transition partly occurs
from the secondΩ ) 1u (C) state to state(s) dissociating into
Cl + Cl* during the bond breaking, as indicated by Matsumi
et al.8 Here, three possibilities for the nonadiabatic transition
can be considered: the radial nonadiabatic transition from the
secondΩ ) 1u to the third or fourthΩ ) 1u state (∆Ω ) 0),
the rotational nonadiabatic transition from the secondΩ ) 1u

to the B3Π0+u state (∆Ω ) (1), or combination of these two.
The Landau-Zener (LZ) and Rosen-Zener-Demkov (RZD)

models are known as typical models for radial nonadiabatic
transitions between adiabatic states with the same symmetry
and play an important role in branching phenomena in chemical
reactions.9,10 In the LZ model, the diagonal Hamiltonian matrix
elements in diabatic representation,Hii andHjj, cross each other
linearly, and the off-diagonal elementHij is constant, giving
rise to an avoided crossing. On the other hand, in the RZD
model, ∆ ) Hjj - Hii is constant andHij depends on the
internuclear distanceR asHij ) A exp(-RR). This model has
been mainly used for the analyses of near resonant charge-
transfer reactions such as Li+ + Na f Li + Na+.11 Gordon et
al.12 discussed the applicability of the RZD model to the spin-
orbit branchings in the photodissociation of oxygen molecules.

Besides, the rotational nonadiabatic transition is another
important mechanism, which connects adiabatic states with
different symmetries. It is known to play a significant part in
predissociation mechanisms, for example, of iodine molecules.13

For the previously mentioned nonadiabatic transition in Cl2,
Matsumi et al.8 suggested that it is the radial nonadiabatic
transition from the secondΩ ) 1u state, and Kitsopoulos et
al.14 assumed that it is between the secondΩ ) 1u and B states
and follows the LZ behavior. More recently, several experiments
on the orientation and alignment in Cl2 have been reported by
Zare et al.15-18 and Vasyutinskii et al.19 In particular, Zare et
al.15 observed the interference effects in the orientation of the
total angular momentum of the photodissociation products Cl*,
and modeled them on the basis of the rotational coupling
between the secondΩ ) 1u and B states in order to reproduce
the experimental behavior.

An anisotropy parameterâ contains important information
on photoexcitation, such as directions of the transition moment,
but shows little information about the dissociation dynamics
after photoexcitation, the shape of potential energy curves far
from the Franck-Condon region, and so on. On the other hand,
since the interference effects in the orientation of the total
angular momentum of the products are quite sensitive to the
details of the entire photodissociation processes, their theoretical
simulation would provide a wealth of information about the
dissociation dynamics. We thus expect that such information
may be detailed enough to resolve the previously mentioned
controversy on the nonadiabatic mechanisms. Furthermore, since
some experimental results are not consistent with one another,
it is useful to theoretically analyze details of the experimental
results.

Almost two decades ago, Peyerimhoff and Buenker et al.20

calculated the ground and excited states of Cl2, and its positive
and negative ions, by the multireference single and double
excitation configuration interaction method without the spin-
orbit interactions. They also calculated the transition moment
between the ground and 23Πu excited states by using the first-
order perturbed wave functions with the spin-orbit Hamiltonian
and analyzed the spin-forbidden transition.21 More accurate
calculation with the spin-orbit Hamiltonian is necessary to
analyze the above experimental results in details.

In this study, we calculate the ground and some excited states
of Cl2 by the spin-orbit configuration interaction (SOCI)
method and examine the nonadiabatic transition processes that
cause branching of the products. It will become clear that the
contribution of the radial nonadiabatic transition is dominant,
while that of the rotational nonadiabatic transition is negligibly
small. This radial nonadiabatic transition is considered to follow
the RZD model rather than the LZ model. Furthermore, we
analyze the quantum-mechanical interference effects in the
orientation of the total angular momentumJ ) 1/2 of Cl* with
Young’s double slit model to enforce our conclusion for the
nonadiabatic mechanism.

2. Computational Methods

We used the RECPs by Christiansen et al.22 with the valence
shell being 3s3p. The associated valence basis functions of 4s4p
were used without contraction and augmented by a set of diffuse
s and p (Rs ) 0.059 97,Rp ) 0.0732) functions. We added two
sets of spherical d-polarization functions (Rd ) 0.7196 and
0.3671), a set of spherical f-polarization functions (Rf ) 0.5),
and a set of spherical g-polarization functions (Rg ) 0.788).
The basis sets are thus expressed as (5s,5p,2d,1f,1g).

One-electron orbitals for the SOCI calculations must be
chosen with a special care to ensure the correct behavior of the
potential curves at longer internuclear distances. We have
employed the state-averaged SCF molecular orbitals that are
optimized for the averaged state of all the configurations derived
from (σg, πu, πg*, σu*)10, namely 10 electrons in the six orbitals.
Here,σg, πu, πg*, and σu* are the molecular orbitals derived
mostly from 3p atomic orbitals of Cl.

For the SOCI calculations, singlet and triplet configuration
state functions (CSF’s) were generated with the reference of
(σg, πu, πg*, σu*) 10. All the single and double excitations from
these reference CSF’s were included in the second-order CI
scheme. We carried out the “contracted SOCI” method where
the total Hamiltonian including the SO part was diagonalized
in the basis of the 16 spin-free CI eigenstates of 3× 1Σ+

g, 1Πux,
1Πgx, 1Σ-

u, 1∆g, 3 × 3Σ+
u, 3Πux, 3Πgx, 3Πuy, 3Πgy, 3Σ-

g, and
3∆u, all of which correlate with the atomic dissociation limits
of Cl(2P) + Cl(2P). The Davidson correction was included in
the CI energy. The electronic transition moments and the matrix
elements of the L-uncoupling operator were calculated by the
first-order SOCI method. All the SOCI calculations were
performed with the COLUMBUS program package23 with an
extension of the spin-dependent GUGA.24,25

3. Result and Discussion

(1) Adiabatic Potential Energy Curves of Cl2. Calculated
adiabatic potential energy curves are shown in Figure 1.
Spectroscopic constants of the X1Σ+

g, A 3Π1u, and B 3Π0+u

states are shown in Table 1, and are in reasonable agreement
with the experimental values.26-28 We thus expect that quantita-
tive results can be obtained for the photodissociation processes
with these ab initio potential energy curves.
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(2) Absorption Spectra of Cl2. The first absorption band of
Cl2 has a maximum at around 330 nm mainly due to the spin-
allowed vertical excitation from the X1Σ+

g to the C1Πu (second
Ω ) 1u) state. However, there are some states that are below
the C state with nonzero electronic transition moments and can
be excited by a photon between 260 and 480 nm. With the spin-
orbit interactions, the “good” quantum number for nonrotating
linear molecules such as Cl2 is thez (molecular axis) component
of the total electronic angular momentum, namelyΩ and g-u
symmetry. The3Πu state splits into four sublevels withΩ )
2u, 1u, 0-

u, and 0+u, although the magnitude of the splittings is
very small especially in the Franck-Condon region. The A3Π1u

state has a small configuration mixing with the1Πu configu-
ration, the B3Π0+u state has a small one with the upper1Σ+

u

configuration, and so on, according to the selection rule for the
spin-orbit interactions. The X state also has a small component
of 3Π0+g besides the dominant1Σ+

g component. These spin-
orbit configuration mixings are the origin of the so-called
intensity borrowing of the A and B states. Therefore, the states
that are below the C state and can be excited from the X state
are the A (via a perpendicular transition,∆Ω ) (1) and B
(via a parallel transition,∆Ω ) 0) states.

In the numerical calculation of the absorption cross sections,
we used the program by Balint-Kurti et al.29 employing the time-
dependent quantum dynamical method.

The calculated absorption spectra to the A, B, and C states
are shown in Figure 2. The peak wavelength of the absorption
band to the C state is 336.2 nm and in good agreement with
the experimental one, which is 331.1 nm by Kitsopoulos et al.14

The theoretical peak intensity of the first absorption band is
weaker than the experimental one of about 0.0027 Å2. This is
mainly because the calculated electronic transition moment,
0.258 D, to the C state at the equilibrium internuclear distance
Re is relatively smaller than the experimentally estimated values,
0.356 D by Coxon31,32 and 0.371 D by Bayliss.32 Our value
was also a little smaller than other theoretical values, 0.3173 D
with the time-dependent Hartree-Fock method and 0.3364 D
with the second-order polarization propagator approximation
method.31 At R ) Re, the calculated transition moment to the B
state was 0.0756 D and that to the A state was 0.0158 D. The
corresponding experimental value to the B state is 0.077 D and
that to the A state is∼0.015 D by Coxon.30 Ishiwata et al.27

suggested that the ratio of the transition moment to the B state
to that to the A state is about 4.8 and in accordance with our
theoretical value of 4.79.

The peak intensity of the absorption band to the B state is
about 4% of that to the C state, while that to the A state is
about 0.3% of that to the C state. These two weak absorption
peaks, however, exist far from the peak position of the C state,
and their relative intensities become more significant in the
longer wavelength region. Therefore, the A and B states are
expected to make an important contribution there, despite their
weak intensities.

(3) Applicability of the Rosen-Zener-Demkov Model.We
first discuss the radial nonadiabatic transition from the second

Ω ) 1u (C 1Πu) to higher state(s) with the sameΩ ) 1u

symmetry. Inspecting Figure 1 and the corresponding adiabatic
SOCI wave functions does not support the Landau-Zener (LZ)-
type behavior for the secondΩ ) 1u state. Instead, we have a
theoretical reason for the applicability of the Rosen-Zener-
Demkov (RZD) model by considering the behavior of the
electronic wave functions.

In the dissociation region, since the Coulombic interaction
between the two atoms is very weak, the coupling of the two
atomic wave functions is represented better by thejj -coupling
scheme. Let the two diabatic states be the valence bond type
wave functionsφi

d for Cl + Cl and φj
d for Cl + Cl*, as

schematically shown in Figure 3. In this representation, their
energy difference∆ ) Hjj - Hii corresponds to the spin-orbit
splitting between Cl and Cl* and usually shows only a weak
dependence on the internuclear distanceR, especially at longer
R. Their interaction matrix elementHij corresponds to the
exchange interaction caused by the Coulombic interaction
between the two atoms and is expected to depend onR as

TABLE 1: Calculated and Experimental Spectroscopic
Constants for the X 1Σ+

g, A 3Π1u, and B 3Π0+u States of Cl2
Re (bohr) De (eV) ωe (cm-1) ωexe (cm-1)

X 1Σ+
g this work 3.811 2.335 549.7 2.78

experiment26 3.755 2.475 559.7 2.67
A 3Π1u this work 4.662 0.2924 237.5 5.76

experiment26,27 4.597 0.3132 265 5
B 3Π0+u this work 4.657 0.3611 240.0 5.26

experiment26,28 4.602 0.3807 259.5 5.3

Figure 2. (a) Absorption spectra of Cl2. (b) Expanded view of (a).
The absorption bands to the A3Π1u and B 3Π0+u states exist in the
edge region of the secondΩ ) 1u (C 1Πu) state.

Figure 3. Rosen-Zener-Demkov (RZD) model applied to the
nonadiabatic interaction in the dissociation regions of two open-shell
atoms with small spin-orbit splittings such as Cl2. ∆ representsHjj -
Hii in the diabatic representation.Hij is the exchange interaction between
the two atoms caused by the Coulombic interaction and behaves as an
exponential function of the internuclear distanceR.
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Hij ) A exp(-RR), satisfying the RZD model. AsR becomes
smaller, namely closer to the Franck-Condon region, the
exchange interaction becomes much larger than∆ and the
electronic wave functions are appropriately represented by the
ΛS-coupling scheme. In particular, the spin-orbit splitting
between Cl and Cl* is 881 cm-1 and much smaller than that
for Br (3685 cm-1) or I (7603 cm-1). Therefore, theΛS-
coupling scheme holds very well in the Franck-Condon region.

If the nonadiabatic interaction follows the RZD model, the
radial derivative matrix element between the two adiabatic wave
functionsΦi andΦj behaves approximately as

with a peak value ofR/4 atR ) Rmax, whereA exp(-RRmax) )
∆/2 is satisfied. AtR ) Rmax, the exchange interaction and the
spin-orbit interaction have an equal magnitude and recoupling
of the adiabatic wave functions takes place. The probability of
the RZD-type nonadiabatic transition is9,10

whereV is the relative velocity of fragments atR ) Rmax. It
follows from eq 2 that asV becomes larger with higher photon
energy,pRZD increases.

In the RZD model, the energy difference of the coupled
adiabatic energiesEi andEj would behave as

In this study, the three parametersA, R, and∆ were determined
by fitting a pair of the coupled SOCI adiabatic energies of
the secondΩ ) 1u and thirdΩ ) 1u (3Σ+

1u(1441)) states to
eq 3. Here, (pqrs) stands for the electronic configuration of
σg

pπu
qπg* rσu* s in terms of the molecular orbitals. These fitted

parameters wereA ) 6.198 72 (hartree),R ) 1.317 70 (bohr-1),
and ∆ ) 4.541 09× 10-3 (hartree).Rmax ) 6.00 (bohr) was
calculated from these parameters. The parameter fitting turned
out to be successful, as can be seen from Figure 4, which plots
ln{(Ej - Ei)2 - ∆2} vs R.

The radial derivative coupling matrix elementgij of eq 1 can
also be calculated directly with the CI vectors in the SOCI
calculation as follows:33,34

wherecki is thekth element in theith CI vector. The step size
∆R in the numerical differentiation was 4.0× 10-4 bohr in
this study. The so-called molecular orbital derivative term was
neglected here because its contribution is usually small and to
the extent of 10-15%.34 This approximation is partly justified
because the molecular orbitals hardly change at longerR.

Figure 5 shows theR dependence of the matrix elementsgi2
CI

between theith and secondΩ ) 1u states. Here the nonadiabatic
transition from the secondΩ ) 1u to the thirdΩ ) 1u state is
considered to be much stronger than that to the fourthΩ ) 1u

state. We actually evaluated the latter probability and found it
totally negligible.18 The matrix elementg52

CI is relatively large,
but its transition probability can indeed be neglected because
the fifth Ω ) 1u state correlates to Cl*+ Cl*, and∆ in eq 2 in
this case corresponds to twice as much as the atomic spin-
orbit splitting. It is also in accordance with the fact that the
apparent products of Cl*+ Cl* have not been observed in any
experimental studies. The nonadiabatic transition probability
depends not only on the matrix element of the nonadiabatic
interaction but also on the adiabatic energy difference.

The RZD parameters,A, R, and∆ can be also obtained by
comparing eq 1 with eq 4. We haveA ) 14.5150 (hartree),
R ) 1.4959 (bohr-1), ∆ ) 5.7515 × 10-3 (hartree), and
Rmax ) 5.7 (bohr) in this way. The nonadiabatic transition
probability with these parameters is a little smaller than that
with the previous parameter set obtained by using only the
adiabatic energy differences. Part of this underestimation comes
from our approximate evaluation of the matrix element in eq 4.
In this study, we thus adopt our previous parameter set and
calculate several properties which follow next.

(4) Branching Ratio Cl*/Cl and Anisotropy Parameter
â(Cl*) by the RZD Model. From Figure 1, both the A3Π1u

and C1Πu (secondΩ ) 1u) states correlate to Cl+ Cl. The B
3Π0+u state and the thirdΩ ) 1u (3Σ+

1u(1441)) state, to which
the RZD-type nonadiabatic transition can occur from the second
Ω ) 1u state, correlate to Cl+ Cl*. The branching ratio

Figure 4. R dependence of the ln{(Ej - Ei)2 - ∆2} value. The
parameter fitting is successful and suggests the applicability of the RZD
model.

gij ) 〈Φi| ∂

∂R|Φj〉 ) R
2

1

∆
2A exp(-RR)

+
2A exp(-RR)

∆

) R
4

1
cosh{R(R - Rmax)}

(1)

pRZD ) 1

1 + exp( π∆
pVR)

(2)

Ej - Ei ) x4A2 exp(-2RR) + ∆2 (3)

Figure 5. R dependence of the radial derivative coupling matrix
elementsgCI between the secondΩ ) 1u (C 1Πu) and otherΩ ) 1u

states. The peak forgCI between the secondΩ ) 1u and thirdΩ ) 1u

(3Σ+
1u(1441)) states is larger than the other peaks.

gij
CI ≈ ∑

k

cki(R)
ckj(R + ∆R) - ckj(R)

∆R
(4)
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Cl*/Cl and the anisotropy parameterâ(Cl*) are calculated within
axial recoil approximation as follows:

wherepRZD is the probability for the RZD-type nonadiabatic
transition from the secondΩ ) 1u to the thirdΩ ) 1u state.
Here,σ(A), σ(B), andσ(C) are the theoretical photoabsorption
cross sections from the X1Σ+

g to the A, B, and C states,
respectively. The wavelength dependence of the calculated
Cl*/Cl is shown in Figure 6 and compared with the experimental
one by Kitsopoulos et al.14 It is found that the wavelength
dependence of Cl*/Cl can be reproduced, and the orders of the
theoretical values of Cl*/Cl at shorter wavelengths are in
agreement with the experimental ones despite their small
magnitude. The wavelength dependence of the calculatedâ(Cl*)
is shown in Figure 7 and in agreement with the experimental
one by Kitsopoulos et al.14

We can understand their behavior on the whole as follows.
At longer wavelengths, the parallel transition to the B state
correlating to Cl+ Cl* becomes dominant andâ(Cl*) becomes
equal to 2. On the other hand, at shorter wavelengths, the
perpendicular transition to the C state correlating to Cl+ Cl
becomes dominant, andâ(Cl*) becomes closer to-1 since Cl*
is originated by the RZD-type nonadiabatic transition from the

secondΩ ) 1u to the third Ω ) 1u state. The calculated
wavelength at whichâ(Cl*) is equal to zero is around 330 nm
and in accordance with the experimental one. As is implied by
eq 6, this wavelength critically depends on the balance between
the intensity of the absorption bands to the B and C states, and
the nonadiabatic transition probabilitypRZD.

(5) Contribution of the Rotational Nonadiabatic Cou-
plings. We have so far considered only the radial nonadiabatic
transitions from the secondΩ ) 1u (C 1Πu) to otherΩ ) 1u

states. On the other hand, as Figure 1 shows, the secondΩ )
1u and B3Π0+u states cross each other atR ) 6.17 bohr. In this
section, we discuss whether the rotational nonadiabatic transition
between these two states plays an important role.

The form of the rotational Hamiltonian for diatomic molecules
in the molecule-fixed coordinate system is as follows:35

where

and

In this study, the electronic part of the wave function obtained
from the SOCI calculation is expanded by the|ΩΛSΣ〉 basis.
When the total wave function consisting of both the electronic
and rotational wave functions is considered, it is represented
by the|JΩΛSΣ〉 basis in Hund’s case (a). The first three terms
in eq 7 give rise to the rotational energy and the remaining parts
correspond to the perturbation terms in the|JΩΛSΣ〉 basis. The
fourth term is called the spin-electronic operator. The selection
rule for the matrix element is∆Λ ) (1, ∆Σ ) -1, ∆S ) 0,
and ∆Ω ) 035 and gives no interaction between the second
Ω ) 1u and B states because of∆Ω ) (1. The fifth termHcor

(L)

and the sixth termHcor
(S) are the so-called Coriolis interaction

terms, and are called as theL-uncoupling andS-uncoupling
operators, respectively. The selection rules for these matrix
elements are∆Λ ) (1, ∆Σ ) 0, ∆S) 0, and∆Ω ) (1, and
∆Λ ) 0, ∆Σ ) (1, ∆S ) 0, and∆Ω ) (1, respectively,35

and they depend on theJ value.
In the Franck-Condon region, according to the selection

rules, especially∆S ) 0, neither theL-uncoupling nor the
S-uncoupling operator can connect these two states. They can
thus have only indirect second-order interactions as a result of
weak spin-orbit configuration mixings.

The situation changes at longerR. The B state is a unique
Ω ) 0+

u state that correlates to Cl+ Cl* and can be described
very well by the3Π0+u configuration even in the dissociation
region. On the other hand, both the first and secondΩ ) 1u

states correlate to Cl+ Cl with significant configuration
mixings. These two states in the dissociation region are
described by theΛS-coupling scheme, as follows:36

Figure 6. Wavelength dependence of the calculated branching ratio
Cl*/Cl compared with the experimental one by Kitsopoulos et al.14 Note
that the values by Kitsopoulos et al.14 are somewhat different from
those by Matsumi et al.8

Figure 7. Wavelength dependence of the calculatedâ(Cl*) compared
with the experimental one by Kitsopoulos et al.14 â(Cl*) calculated
with the rotational coupling mechanism at the rotational temperature
of 300 K is shown as a dashed line.

Hrot ) 1

2µR2
[(J2 - Jz

2) + (L2 - Lz
2) + (S2 - Sz

2)

+ (L+S- + L-S+) - (J+L- + J-L+) - (J+S- + J-S+)]

) 1

2µR2
[(J2 - Jz

2) + (L2 - Lz
2) + (S2 - Sz

2)]

+ 1

2µR2
(L+S- + L-S+) + Hcor

(L) + Hcor
(S) (7)

Hcor
(L) ) - 1

2µR2
(J+L- + J-L+) (8)

Hcor
(S) ) - 1

2µR2
(J+S- + J-S+) (9)

Cl*
Cl

)
σ(B) + σ(C)pRZD

σ(B) + σ(C)(2 - pRZD) + 2σ(A)
(5)

â(Cl*) )
2σ(B) - σ(C)pRZD

σ(B) + σ(C)pRZD

(6)
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According to the selection rules, the3Π0+u (Σ ) (1, Λ ) -1,
andΩ ) 0+

u) configuration in the B state can have interactions
with the 3Π1u (Σ ) 0, Λ ) (1, andΩ ) 1u), 3Σ+

1u (Σ ) (1,
Λ ) 0, andΩ ) 1u), and3∆1u (Σ ) (1, Λ ) -2, andΩ ) 1u)
configurations in the secondΩ ) 1u state. Therefore, the matrix
elements between the B state and the following configurations
need to be taken into consideration.

TheRdependence of the weights of the spin-free components
included in the secondΩ ) 1u state shows that the1Πu(2431)
component is dominant atR) Re (3.8 bohr) but the3Σ+

1u(1441)
component cannot be neglected (∼30%) at aroundR ) 6 bohr.
It is necessary to consider the rotational nonadiabatic transition
from the secondΩ ) 1u to the B state, because it may occur
through the3Σ+

1u(1441) component.
The electronic HamiltonianHel in the usual CI calculation

does not include the molecular rotational HamiltonianHrot

represented by eq 7.Hrot acts as perturbation that brings a
nonadiabatic transition between the eigenstates ofHel. However,
the rotational nonadiabatic coupling does not straightforwardly
follow the Landau-Zener (LZ) behavior in the usual adiabatic
basis. Nakamura37 defined the dynamical states as the eigenstates
of Hel + Hrot. In this dynamical-state representation,Hel + Hrot

is completely diagonal with respect to nuclear rotations and
electronic degrees of freedom, and a nonadiabatic transition
caused by molecular rotations can be treated as if it were a radial
coupling problem.

When a diatomic molecule such as Cl2 is considered, the
dynamical states with the total angular momentumJ can be
expanded in terms of the electronic rotational basis functions
ΨJ(Ω) defined as

where Φ(Ω;r :R) is the electronic wave function,r are the
electronic coordinates in the molecule-fixed coordinate system,
Y(J,Ω;R̂) is the nuclear rotational wave function, andR̂describes
the molecular orientation. The electronic rotational basis func-
tions for the B and secondΩ ) 1u states are written asΨJ(0u

+)
andΨJ((1u), respectively. Here,ΨJ((1u) can be transformed
to the following two components with opposite parities.35

ΨJ(0u
+) and Ψ+

J (1u) have the same parity and interact with
each other, butΨ-

J (1u) has the opposite parity and has no
interaction. The matrix elements of theL-uncoupling and

S-uncoupling operators have only to be calculated between
ΨJ(0u

+) andΨ+
J (1u). Therefore, the eigenvalue problem to be

solved for the two states under consideration is

where the matrix elements ofHel are the adiabatic SOCI
energies,Erot(Ω) in the diagonal parts are the rotational energies,
and the subscriptsr and R̂ describe the integration over allr
and R̂. Erot(Ω) was calculated in the Hund’s case (a) basis by

The matrix element of theL-uncoupling operator is repre-
sented as follows:

Furthermore, the brackets in eq 14 lead to

and

where the subscriptsx andy represent thex- andy-components
in the molecule-fixed coordinate system, respectively. The
matrix element of theL-uncoupling operator of eq 14 can be
rewritten with eqs 15 and 16 as follows:

The R dependence of the calculated matrix element of theLy

operator in eq 17 has a maximum at aroundR ) 6 bohr due to
theR dependence of the3Σ+

1u(1441) component in the second
Ω ) 1u state.

On the other hand, as described before, the matrix element
of the S-uncoupling operator is not zero only when the
3Π1u(2431) component in the secondΩ ) 1u state is not zero.
Therefore, the matrix element of theS-uncoupling operator
between the secondΩ ) 1u and B states can be simply estimated
from the matrix element between the3Π1u(2431) and the B
3Π0+u components, multiplied byc(3Π1u), which is the coef-
ficient of the3Π1u(2431) component in the secondΩ ) 1u state.

|1stΩ ) 1u〉 )
1

x3
|3Π1u(2431)〉 + 1

x3
|1Πu(2431)〉 + 1

x3
|3Σ1u

+ (2332)〉

|2ndΩ ) 1u〉 )

x2
3

|3Π1u(2431)〉 -
x2
3

|1Πu(2431)〉 +

2
3
|3Σ1u

+ (1441)〉 + 1
3
|3∆1u(2332)〉

L-uncoupling:3Σ+
1u(1441),3Σ+

1u(2332),3∆1u(2332)

S-uncoupling:3Π1u(2431)

ΨJ(Ω) ) Φ(Ω;r :R) Y(J,Ω;R̂) (10)

Ψ+
J (1u) ) 1

x2
{ΨJ(+1u) + ΨJ(-1u)}

Ψ-
J (1u) ) 1

x2
{ΨJ(+1u) - ΨJ(-1u)} (11)

|〈Φ(0u
+;r :R)|Hel|Φ(0u

+;r :R)〉r + 〈Ψ+
J (1u)|Hcor

(L) + Hcor
(S)|ΨJ(0u

+)〉r ,R̂

Erot(0u
+) - EJ(R)

〈ΨJ(0u
+)|Hcor

(L) + Hcor
(S)|Ψ+

J (1u)〉r ,R̂ 〈Φ(1u;r :R)|Hel|Φ(1u;r :R)〉r +

Erot(1u) - EJ(R)
|

) 0 (12)

Erot(Ω) ) p2

2µR2
{J(J + 1) - 2Ω2} (13)

〈ΨJ(0u
+)|Hcor

(L)|Ψ+
J (1u)〉r ,R̂ )

- 1

2µR2
[J(J + 1)]1/2 1

x2
[〈Φ(0u

+;r :R)|L-|Φ(+1u;r :R)〉r +

〈Φ(0u
+;r :R)|L+|Φ(-1u;r :R)〉r] (14)

〈Φ(0u
+;r :R)|L-|Φ(+1u;r :R)〉r

) 〈Φ(0u
+;r :R)|Lx - iLy| 1

x2
{Φ(1u;r :R)x + iΦ(1u;r :R)y}〉r

) - x2i〈Φ(0u
+;r :R)|Ly|Φ(1u;r :R)x〉r (15)

〈Φ(0u
+;r :R)|L+|Φ(-1u;r :R)〉r )

-x2i〈Φ(0u
+;r :R)|Ly|Φ(1u;r :R)x〉r (16)

〈ΨJ(0u
+)|Hcor

(L)|Ψ+
J (1u)〉r ,R̂ )

i

µR2
[J(J + 1)]1/2〈Φ(0u

+;r :R)|Ly|Φ(1u;r :R)x〉r (17)
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The eigenvalue includingHrot is calculated from eq 12 with
the above matrix elements. The radial nonadiabatic transition
probability between these two potential energy curves in the
dynamical-state representation can be obtained by the semiclas-
sical Landau-Zener-Stueckelberg (LZS)-type expression and
actually corresponds to the probability that a fragment still
remains on the same adiabatic state after it passes the crossing
point in the usual adiabaitc representation. This probabilitypLZS

is calculated from the following expression,38

where

and V is the velocity at the crossing point,RX
/ is the complex

internuclear distance there,RX is the real part ofRX
/, Ei (i ) 1

and 2) andH12 are the matrix elements in eq 12.
pLZS depends on the total angular momentumJ becauseEi

and H12 are functions ofJ. Assuming that the rotational
population follows the Boltzmann distribution, we calculated
thepLZS value as a function of the rotational temperature, which
was assumed to be 200, 250, or 300 K because we do not have
precise information about the experimental one.

The wavelength dependence of the rotational LZS-type
nonadiabatic transition probability from the secondΩ ) 1u to
the B state,prot ) 1 - pLZS, is shown in Figure 8 and is too
small to explain the observed results. In fact, ifpRZD in eq 6 is
replaced by thisprot, â(Cl*) based on the rotational coupling
mechanism can be calculated. The wavelength dependence of
â(Cl*) thus calculated for 300 K is shown as a dashed line in
Figure 7 and deviates from the experimental one very much.
We have almost the same rotational transition probability by
using the new formula proposed by Nakamura and Zhu.10 It

becomes clear now that the rotational nonadiabatic transition
probability is negligibly small, as suggested by Matsumi et al.8

(6) Comparison with Other Works. We have so far showed
that the RZD-type nonadiabatic transition is the dominant
mechanism to yield Cl* from the secondΩ ) 1u (C 1Πu), but
other groups have considered different nonadiabatic transition
processes.

Kitsopoulos et al.14 estimated the probability that Cl is
transferred to Cl* by the nonadiabatic transition from the second
Ω ) 1u to the B3Π0+u state,pcc in Figure 8, as follows:

whereσ(B) andσ(C) are the partial absorption cross sections
from the X 1Σ+

g to the B and C states, respectively, andA is
the coefficient of the perpendicular component when the angular
distribution of the fragments is represented asf(θ) ∝ A sin2

θ + cos2 θ, whereθ is the angle between the fragment recoil
direction and the electric polarization vector. They noticed that
the behavior ofpcc follows the Landau-Zener (LZ)-type
relationship,

wherec is a constant andV is the velocity at the crossing point
of the two potentials. Although their experimental results
approximately followed eq 23 between 310 and 340 nm, they
also showed significant deviations at wavelengths longer than
340 nm.

As shown in Figure 8, theirpcc value becomes larger as the
wavelength is longer, namely, the velocity of the fragment is
smaller. On the other hand, the RZD-type nonadiabatic transition
probability calculated in this study becomes smaller, as the
wavelength is longer. Moreover, the magnitude of theirpcc is
very different from that of the rotational nonadiabatic transition
probability,prot, calculated in this study, althoughpcc shows a
wavelength dependence similar to that ofprot.

Kitsopoulos et al.14 further discussed that the nonadiabatic
transition may occur at around 3 eV above the zero-point energy
of the X state, namely, 0.021 hartree above the dissociation limit
of Cl + Cl, and follows the LZ-type behavior according to the
velocity dependence of eq 23. Their assumption, however, is
not justified because no LZ-type nonadiabatic transition was
found in the potential energy curves in Figure 1, and the curve
crossing between the secondΩ ) 1u and B states occurs at
almost the same energy as the dissociation limit of Cl+ Cl.

This difference in the interpretation of the nonadiabatic
transition mechanism could originate from the uncertainty of
the experimental intensities of the absorption bands. Kitsopoulos
et al.14 had precise information about the branchings only at
wavelengths longer than 350 nm, where both the Cl*/Cl and
â(Cl*) values were observed. They have obtained the partial
absorption cross sections at wavelengths shorter than 350 nm
by extrapolating them at the longer wavelengths side. Therefore,
their values, in particular at the shorter wavelengths side, might
include some errors. In fact, their intensity ratio 4.6× 103

between the absorption band to the C state and that to the B
state amounts to about 5 times of ours 8.9× 102 at 310 nm.

Zare et al.15 modeled that Cl* is produced by the rotational
nonadiabatic transition from the secondΩ ) 1u to the B state.
They estimated that these two potential energy curves cross each
other atRX ) 5.97 bohr and calculated an effective potential
by which the secondΩ ) 1u state could smoothly transfer to

Figure 8. Wavelength dependence of the rotational nonadiabatic
transition probability,prot, calculated by the Landau-Zener-Stueckelberg
(LZS) scheme in comparison withpcc, which is the probability that Cl
is transferred to Cl* by the nonadiabatic transition from the second
Ω ) 1u to the B3Π0+u state, estimated by Kitsopoulos et al.14

〈ΨJ(0u
+)|Hcor

(S)|Ψ+
J (1u)〉r ,R̂

) - 1

2µR2

1

x2
{[2J(J + 1)]1/2c(3Π1u) + [2J(J + 1)]1/2c(3Π1u)}

) - 1

µR2
[J(J + 1)]1/2c(3Π1u) (18)

pLZS ) exp(-2δ) (19)

σ + iδ ) 1
V∫RX

RX
/

∆E dR (20)

∆E ) x(E1 - E2)
2 + 4H12

2 (21)

pcc )
Aσ(B)

2σ(C) + Aσ(B)
(22)

pcc ∝ 1 - exp(- c
V) (23)
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the B state in such a way that the matrix element of the
nonadiabatic coupling between them had a maximum atR )
RX. They simulated the quantum-mechanical interference effects
in the orientation of the total angular momentumJ ) 1/2 of Cl*
with this effective potential and obtained fair agreement with
experiment. On the other hand, our analysis showed that the
rotational nonadiabatic transition probability from the second
Ω ) 1u to the B state is on the order of 10-5, as shown in
Figure 8, and is too small to reproduce the wavelength
dependence of Cl*/Cl andâ(Cl*).

However, Cl* should be produced by some nonadiabatic
transitions at aroundR ) 6 bohr, because Zare et al.15 could
reproduce the experimental behavior assuming that the matrix
element of a nonadiabatic coupling had a maximum atRX )
5.97 bohr. It is interesting that ourRmax value (6.00 bohr) in
the RZD model is very close to theirRX value. In fact, we have
seen that the RZD-type nonadiabatic transition from the second
Ω ) 1u to the thirdΩ ) 1u state can reproduce the wavelength
dependence of Cl*/Cl andâ(Cl*). Therefore, we expect that
the radial RZD-type nonadiabatic mechanism can also reproduce
the interference effects.

(7) The Quantum-Mechanical Interference Effects in the
Orientation of the Total Angular Momentum J ) 1/2 of the
Fragment Cl* (2P1/2). Classically, if an electric field oscillates
to a direction between parallel and perpendicular to the
molecular axis, it induces electronic oscillations in both the
parallel and perpendicular directions coherently, that is, with
the same phase. According to the potential energy difference
between parallel and perpendicular types, the difference in the
oscillation frequencies emerges as the molecule dissociates and
induces the rotational motion of the electron, namely, the
nonstatistical orientation of the angular momentum.17 Such a
preferential orientation is subject to the quantum-mechanical
interference effects due to the presence of the two paths, that
is, one via the parallel transition (∆Ω ) 0) and the other via
the perpendicular transition (∆Ω ) (1).

In the wavelength region from 270 to 390 nm, from our
previous analysis, such interference effects in the orientation
of the total angular momentumJ ) 1/2 of the fragment Cl* are
thought to be caused by both Cl* from the B3Π0+u (∆Ω ) 0)
state and Cl* from the thirdΩ ) 1u (3Σ+

1u(1441)) (∆Ω ) (1)
state produced by the radial RZD-type nonadiabatic transition
from the secondΩ ) 1u (C 1Πu) state. After an electronic
excitation to both the B and C states, the molecule dissociates
on the different potentials but finally arrives at the same
dissociation products, Cl+ Cl*. The potential energy difference
produces the phase difference between these two paths and
causes the interference effects.

We apply Young’s double slit model39,40 to estimate the
interference effects. The total phases for the two dissociation
paths given in a semiclassical form are

whereT2 is the turning point of the C state for a given photon
energy,T0 is that of the B state for the same energy, andRmax

is the R value at which the matrix element of the RZD-type
nonadiabatic coupling between the secondΩ ) 1u and third

Ω ) 1u states has a maximum.kn is the wavenumber in relation
to the adiabatic energy for thenth state,En, as follows:

whereµ is the reduced mass of Cl2 andE is the total energy,
which is the zero-point energy of the X1Σ+

g state added to the
photon energy. We usen ) 0 for the B state,n ) 2 for the
secondΩ ) 1u state, andn ) 3 for the thirdΩ ) 1u state.σ0

in eq 24 is the so-called dynamical phase and represents the
additional phase due to the RZD-type nonadiabatic transition.9

whereV is the relative velocity atR ) Rmax and∆ andR are
the parameters for the RZD model. The phase difference
between the two paths is defined as follows:

The interference effects between one path via the parallel
transition and the other via the perpendicular transition result
from the symmetry breaking induced by a mixed transition in
which both parallel and perpendicular components are ac-
cessed.40 Quantum-mechanically, the mixed transition is de-
scribed by a sum of the incoherent and coherent “interference”
contributions from parallel and perpendicular transitions.17 In
the case of linearly polarized photolysis light, there only exists
the imaginary part of the photofragment orientation parameter,
Im[a1

(1)(|,⊥)] in the angular momentum distribution. This
Im[a1

(1)(|,⊥)] parameter is estimated as follows:15

where |A|| and |A⊥| are the coefficients of the transition
amplitudes for the parallel and perpendicular transitions,
respectively, and∆φ is the phase difference between the parallel
and perpendicular paths. For a pure parallel or perpendicular
transition, Im[a1

(1)(|,⊥)] becomes zero because|A⊥| or |A|| in
eq 29 is equal to zero.15 If one parallel and one perpendicular
path are considered, eq 29 can be rewritten as40

The calculated Im[a1
(1)(|,⊥)] value from eq 30 as a function

of an excitation wavelength is compared with the experimental
one by Zare et al.15 in Figure 9. In this calculation, we scaled
the calculated potential energies by multiplying a factor of
0.3807/0.3611, because the dissociation energyDe for the B
state was underestimated by this factor.

The wavelength dependence of this interference pattern is in
fair agreement with the experimental one, and the isotope effect
between35Cl* and 37Cl* was also reproduced, despite the
sensitivity of Im[a1

(1)(|,⊥)] to the shape of the potential energy
curves. This isotope effect comes from the mass dependence
of the phase difference through eq 26.

However, there are some discrepancies between the theoreti-
cal and experimental behavior. It may suggest that there still
remain errors in the potential energy curves although they were
corrected by a scale factor. Moreover, the disagreement may
result from the fact that the nonadiabatic transition from the
third Ω ) 1u to the fourth Ω ) 1u (3∆1u) state cannot be
neglected. Zare et al.18 discussed that its transition probability

φ2ndΩ)1uf3rdΩ)1u
) π

4
+ ∫T2

Rmaxk2(R) dR + σ0 +

∫Rmax

∞
[k3(R) - k3(∞)] dR - k3(∞)Rmax (24)

φB3∏0+u
) π

4
+ ∫T0

∞
[k0(R) - k0(∞)] dR - k0(∞)T0 (25)

kn(R) ) 1
px2µ{E - En(R)} (26)

σ0 ) ∆
pVR

{x2 - ln(1 + x2)} (27)

∆φ ) φ2ndΩ)1uf3rdΩ)1u
- φB3∏0+u

(28)

Im[a1
(1)(|,⊥)] ∝ |A|||A⊥| sin(∆φ) (29)

Im[a1
(1)(|,⊥)] ∝ x(1 + â)(1 - â

2) sin(∆φ) (30)
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was about 20% and might be important. At this moment, we
have no conclusive effect by including the fourthΩ ) 1u state,
which has the same dissociation limit, Cl+ Cl*, as the third
Ω ) 1u state.

As for the experimental side, Zare41 suggested that the
measurement errors in an anisotropy parameterâ might lead to
some discrepancies in the wings in the interference pattern
because the envelope functionx(1+â)(1-â/2) is very sensi-
tive to the â value. In particular, such sensitivity is more
pronounced for theâ values for almost pure parallel (â ) 2)
and perpendicular (â ) -1) transitions.42

As mentioned so far, it is clear that the RZD-type nonadiabatic
transition from the secondΩ ) 1u to the thirdΩ ) 1u state can
explain and reproduce not only the behavior of the branching
ratio Cl*/Cl and anisotropy parameterâ(Cl*) but also the overall
interference pattern. This fact can be a strong evidence that the
nonadiabatic transition from the secondΩ ) 1u to state(s)
dissociating into Cl+ Cl* follows the RZD model.

4. Conclusion

In this work, we have shown that the Rosen-Zener-Demkov
(RZD) model can be applied to the noncrossing-type nonadia-
batic transitions in the dissociation region of Cl2.

We calculated the ground and some excited states of Cl2 by
the spin-orbit configuration interaction (SOCI) method and
examined the processes of the nonadiabatic transitions that cause
the spin-orbit branchings of the products. The radial RZD-
type nonadiabatic transition from the secondΩ ) 1u (C 1Πu)
to the third Ω ) 1u (3Σ+

1u(1441)) state was the dominant
mechanism to produce Cl* with the negative anisotropy
parameterâ(Cl*). The RZD parameters for the transition were
A ) 6.198 72 (hartree),R ) 1.317 70 (bohr-1), and ∆ )
4.541 09× 10-3 (hartree). The radial derivative coupling matrix
element has a maximum atRmax ) 6.00 (bohr). On the other
hand, the rotational nonadiabatic transition probability from the
secondΩ ) 1u to the B3Π0+u state was negligibly small.

The branching ratio Cl*/Cl andâ(Cl*) were evaluated from
the intensities of the absorption bands to the A3Π1u, B 3Π0+u,
and C 1Πu states with the RZD transition probability. Their
wavelength dependence was well reproduced and originated
from the radial RZD-type nonadiabatic transition at shorter

wavelengths and from the behavior of the transition moments
at longer wavelengths. The RZD model could roughly reproduce
the quantum-mechanical interference effects in the orientation
of the total angular momentumJ ) 1/2 of the products Cl*.

For further details, it is necessary to calculate the radial
derivative coupling matrix elements including the molecular
orbital derivative terms with much larger basis set and use a
more rigorous quantum-mechanical method to analyze the
dissociation dynamics including the fourthΩ ) 1u state. Such
work is now in progress in our laboratory.

Acknowledgment. Some of the present calculations were
carried out at the Research Center for Computational Science,
Okazaki National Research Institutes. This work was supported
in part by a Grants-in-Aid for Scientific Research from the
Ministry of Education, Science, Culture, and Sports of Japan
and by Research and Development Applying Advanced Com-
putational Science and Technology, Japan Science and Technol-
ogy Corp. We thank Profs. Dick N. Zare, who suggested this
work, Masahiro Kawasaki, Yutaka Matsumi, and T. N. Kitso-
poulos and Drs. Andy Alexander and Zee Hwan Kim for useful
discussions on their experimental results.

References and Notes

(1) Singer, S. J.; Freed, K. F.; Band, Y. B.AdV. Chem. Phys.1985,
61, 1.

(2) Hall, G. E.; Houston, P. L.Annu. ReV. Phys. Chem. 1989, 40, 375.
(3) Dixon, R. N.J. Chem. Phys.1986, 85, 1866.
(4) Siebbeles, L. D. A.; Glass-Maujean, M.; Vasyutinskii, O. S.;

Beswick, J. A.; Roncero, O.J. Chem. Phys.1994, 100, 3610.
(5) Orr-Ewing, A. J.; Zare, R. N.Annu. ReV. Phys. Chem.1994, 45,

315.
(6) Herzberg, G.Molecular Spectra and Molecular Structure. I Spectra

of Diatomic Molecules; Van Nostrand Reinhold: Princeton, NJ, 1950.
(7) Li, L.; Lipert, R. J.; Lobue, J.; Chupka, W. A.; Colson, S. D.Chem.

Phys. Lett.1988, 151, 335.
(8) Matsumi, Y.; Tonokura, K.; Kawasaki, M.J. Chem. Phys.1992,

97, 1065.
(9) Nikitin, E. E.; Umanskii, S.Theory of Slow Atomic Collisions;

Springer-Verlag: New York, 1984.
(10) Nakamura, H.Nonadiabatic Transitions: Beyond Born-Oppen-

heimer. In Dynamics of Molecules and Chemical Reactions; Wyatt, R. E.,
Zhang, J. Z. H., Ed.; Marcel Dekker: New York, 1996; p 473.

(11) For example, Dinterman, T. R.; Delos, J. B.Phys. ReV. A 1977,
15, 463.

(12) Huang, Y.-L.; Gordon, R. J.J. Chem. Phys.1991, 94, 2640.
(13) For example, Tellinghuisen, J.J. Chem. Phys.1972, 57, 2397.
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